A ubiquitin defense
نویسندگان
چکیده
منابع مشابه
A Ubiquitin-like Protein Unleashes Ubiquitin Ligases
Modification of cullin-RING ubiquitin ligases by the ubiquitin-like molecule Nedd8 promotes substrate ubiquitination. A crystal structure of a cullin modified by Nedd8 recently reported in Cell (Duda et al., 2008) and a biochemical study in Molecular Cell (Saha and Deshaies, 2008) reveal the dramatic impact on the ligase machinery by conjugation of ubiquitin or ubiquitin-like proteins.
متن کاملArabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense.
Posttranslational modifications allow dynamic and reversible changes to protein function. In Arabidopsis thaliana, a small gene family encodes paralogs of the small ubiquitin-like posttranslational modifier. We studied the function of these paralogs. Single mutants of the SUM1 and SUM2 paralogs do not exhibit a clear phenotype. However, the corresponding double knockdown mutant revealed that SU...
متن کاملThe ubiquitin-like modifier FAT10 in antigen processing and antimicrobial defense.
The ubiquitin-like modifier (ULM) HLA-F adjacent transcript 10 (FAT10) is encoded in the MHC locus, is up-regulated during dendritic cell maturation, is highly expressed in lymphoid tissues, and strongly induced by interferon (IFN)-γ and tumor necrosis factor (TNF)-α. FAT10 is the only ULM known to date which directly targets its hundreds of substrates for degradation by the proteasome. This im...
متن کاملNuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program
The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin-proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that ...
متن کاملUbiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins.
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Chemical Biology
سال: 2017
ISSN: 1552-4450,1552-4469
DOI: 10.1038/nchembio.2524